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ABSTRACT
HIF-1 activation has been well known as an adaptive strategy to hypoxia. Recently it became clear that hypoxia was often accompanied by
insufficient supply of glucose or amino acids as a common result of poor circulation that frequently occurs in solid tumors and ischemic
lesions, creating a mixed nutrient insufficiency. In response to nutrient insufficiency, stressed cells elicit survival strategies including
activation of AMPK and HIF-1 to cope with the stress. Particularly, in solid tumors, HIF-1 promotes cell survival and migration, stimulates
angiogenesis, and induces resistance to radiation and chemotherapy. Interestingly, radiation and some chemotherapeutics are reported to
trigger the activation of AMPK. Here we discuss the recent advances that may potentially link the stress responsive mechanisms including
AMPK activation, ATF4 activation and the enhancement of Hsp70/Hsp90 function to HIF-1 activation. Potential implication and application
of the stress-facilitated HIF-1 activation in solid tumors and ischemic disorders will be discussed. A better understanding of HIF-1 activation in
cells exposed to stresses is expected to facilitate the design of therapeutic approaches that specifically modulate cell survival strategy. J. Cell.
Biochem. 117: 267–278, 2016. © 2015 Wiley Periodicals, Inc.
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Hypoxia-inducible factor -1 (HIF-1) was first discovered in
the studies of hypoxia-triggered elevation of human

erythropoietin (EPO), a glycoprotein hormone made in renal cells
and fetal hepatocytes which stimulates bone marrow hemato-
poietic cell proliferation to produce red blood cells [Semenza and
Wang, 1992]. Early purification work using DNA affinity
chromatography and subsequent biochemical characterization
revealed that HIF-1 is a heterodimer consisting of HIF-1a and
HIF-1b [Wang and Semenza, 1995]. HIF-1a protein levels
increase dramatically when oxygen concentration decreases
[Wang et al., 1995]. As a transcription factor, activated HIF-1
enters the nucleus, recruits coactivator p300/CBP, and repro-
grams gene expression to alter cellular processes, facilitating cell
survival under transient hypoxic condition. Since the identi-
fication of HIF-1, more than 1,000 HIF-1 targets have been
identified by a variety of approaches [Manalo et al., 2005; Xia
et al., 2009; Schodel et al., 2011]. Metabolically, activation of
HIF-1 switches the ATP producing mode from aerobic respiration

to the oxygen-independent fermentation, a more rapid, but less
efficient way of glucose utilization. Consequently, HIF-1 drives
the overexpression of glucose transporter 1 (GLUT1), which
increases glucose uptake to compensate the low efficiency.
Increased lactate dehydrogenase (LDH) accelerates the conver-
sion of pyruvate and NADH to lactate and NADþ, respectively,
ensuring an undisrupted glycolytic process and maintaining an
intracellular redox balance. HIF-1 also stimulates the expression
of carbonic anhydrase 9 (CA-IX), which maintains intracellular
pH by exporting protons to the extracellular matrix.

In this review, we will briefly summarize the activation of HIF-1
by hypoxia to set the platform for the subsequent discussion of the
control of HIF-1a translation and posttranslational processing as a
survival strategy of stressed cells (Fig. 1). Integrating knowledge in
literature and recent findings, we propose a crucial role of HIF-1 as a
facilitator of adaptation to a variety of cellular stresses such as
proliferative biosynthesis, nutrient insufficiency and radiation
therapy.
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OXYGEN SENSING PATHWAYS ACTIVATE HIF-1 BY HYPOXIC
STABILIZATION OF MATURE HIF-1a
As a general final electron acceptor in oxidative phosphorylation
and other redox reactions, molecular oxygen is essential for
mammalian cell survival, energy homeostasis and other cellular
processes. A constant supply of oxygen is indispensable for
maintaining normal tissue functions, particularly in cardiac and
brain function. Hypoxia, a state in which oxygen supply is
insufficient, has been involved in the pathogenesis of multiple
diseases with top leading mortality rates, including heart diseases,
chronic respiration disease, stroke, anemia and bleeding [Kochanek
et al., 2014]. Hypoxia also contributes to tumor progression,
metastasis and resistance to radiation and chemotherapy [Semenza,
2003, 2012; Kaelin and Ratcliffe, 2008]. The identification of HIF-1
as a major regulator of adaptation to hypoxia gave us a better
understanding of the molecular mechanisms underlying oxygen
sensing pathways, oxygen homeostasis, energy homeostasis and
disease pathology [Keith and Simon, 2007; Takubo et al., 2010;
Zhang et al., 2011; Doedens et al., 2013; Semenza, 2014].

Structurally, HIF-1 is a basic helix-loop-helix (bHLH) tran-
scription factor of the PER-ARNT-SIM (PAS) subfamily. HIF-1a and
HIF-1b are structurally similar, each containing a bHLH domain for
DNA binding, a PAS domain for hetero-dimerization and trans-
activation domain for transcriptional activity regulation [Semenza,
2003] (Fig. 2). HIF-1b, also known as aryl hydrocarbon nuclear
translocator (ARNT), is a stable protein, serving as a common
dimerization partner for multiple transcription factors, while the
protein level and functionality of HIF-1a determine the

transactivation activity of HIF-1. Like HIF-1b, HIF-1a is also
constitutively translated; unlike HIF-1b, HIF-1a protein is subject to
degradation through an oxygen-dependent mechanism (Fig. 2). In
the presence of adequate molecular oxygen, HIF-1a protein will be
recognized by three prolyl hydroxylases (PHDs), which hydroxylate
HIF-1a at two prolyl residues (P402 and P564) [Bruick and
McKnight, 2001; Epstein et al., 2001]. The hydroxylated HIF-1a is
recognized by the von Hippel Lindau protein (VHL), a ubiquitin
ligase, leading to HIF-1a polyubiquitination. The ubiquitinated HIF-
1awill befinally degraded by the 26S proteasome [Salceda and Caro,
1997; Huang et al., 1998].

The PHDs that determine the stability of mature HIF-1a belong
to a dioxygenase family [Schofield and Ratcliffe, 2004]. These
enzymes require molecular oxygen and a-ketoglutarate as co-
substrates, as well as Fe2þ and ascorbate (vitamin C) as co-factors
for enzymatic activity (Fig. 2) [Hirsil€a et al., 2003]. Mutations of
succinate dehydrogenase (SDH) and fumarate hydratase (FH), two
enzymes of the tricarboxylic acid cycle, were found to block PHDs
activity and increase HIF-1a protein levels by increasing the
concentration of succinate and fumarate respectively, which act as
PHD inhibitors [Isaacs et al., 2005; Pollard et al., 2005; Selak et al.,
2005]. Moreover, reports showed that mutations in the cytosolic
isocitrate dehydrogenase (IDH1,2) may result in a decrease of a-
ketoglutarate, thus stabilizing HIF-1a protein [Zhao et al., 2009].
More recent reports demonstrate that mutations in IDH1 or IDH2
result in the formation of abnormal metabolite (R)-2-hydroxyl-
glutarate, which stimulates PHD activity, thus decreasing HIF-1a
protein levels in gliomas [Koivunen et al., 2012]. However, clinical

Fig. 1. Summary of the synthesis, posttranslational processing and hypoxia-controlled degradation of HIF-1a. After translation, nascent HIF-1a interacts with the molecule
chaperone Hsp70/Hsp90 system for processing and maturation. Proteins that fail the posttranslational folding processes will be degraded by a quality control system using an
ubiquitination-independent proteasome degradation pathway (UIP). The protein levels of correctly folded functional HIF-1a will be regulated by the oxygen-dependent
hydroxylation-ubiquitination mechanism.
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studies by directly imaging HIF-1 target gene expression in tumors
indicate that the relationship between IDH mutations and HIF-1
activity in vivo remains unclear[Metellus et al., 2011]. In addition,
HIF-1a transcriptional activity is also regulated by an oxygen-
dependent hydroxylation event. Factor inhibiting HIF-1 (FIH)
[Mahon et al., 2001], another oxygen-dependent hydroxylase,
modifies the asparagine residue (N803) in the carboxyl terminal
activation domain and disrupts its interaction with p300/CBP
[Lando et al., 2002; Sang et al., 2002]. In summary, the oxygen-
dependent hydroxylation of HIF-1a forms the biochemical basis
for the conventional oxygen sensing pathway (Fig. 1), representing
the initiation of a physiological adaptation to hypoxia.

PROLIFERATIVE SIGNALING PATHWAYS ACTIVATE
HIF-1 BY ACCELERATED TRANSLATION

Proliferating cells usually demand more molecular oxygen to
support active biosynthesis. Growth factors, which activate the
major signaling pathways such as mitogen activated protein kinase
(MAPK) and insulin-stimulated PI3K pathways for cell proliferation,
also increase HIF-1a protein synthesis to promote glucose utilization
and ATP production [Semenza, 2003, 2012; Kaelin and Ratcliffe,
2008]. In solid tumors, activation of oncogenes (Ras, PI3K/AKT) and
loss of tumor suppressors (PTEN, LKB1 and TSC2/1) may activate
HIF-1 by enhancing HIF-1a protein synthesis (Fig. 3). As in the
translation of other proteins, mechanistic target of rapamycin
(mTOR, also known as mammalian target of rapamycin), as part of
mTOR complex 1 (mTORC1), is the key regulator that transmits
growth signals to translational machinery, which is often dysregu-
lated in cancers [Benjamin et al., 2011]. As an integrator of growth
singaling pathways and nutrient status, mTOR stimulates protein
translation by phosphorylating ribosomal protein S6 kinase (S6K),
eukaryotic elongation factor 2 kinase (EEF2K) and eukaryotic

translation initiation factor 4E (EIF4E)-binding protein 1 (4EBP1),
leading to increased protein translation [Wouters and Koritzinsky,
2008]. Particularly insulin/IGF and EGF, the most important cellular
signaling pathways that regulate cell proliferation, stimulate
mTORC1 [Harris and Lawrence, 2003]. The mechanism by which
these signal pathways activate mTORC1 has been highlighted by the
discovery that mTOR is suppressed by the tuberous sclerosis complex
(TSC) gene products TSC2/1 [Inoki et al., 2005], and TSC2 is

Fig. 2. Schematic structure of HIF-1a and the conventional oxygen-dependent inhibition of HIF-1.

Fig. 3. Signaling pathways that controls the rate of HIF-1a translation.
Activation of oncogenes or loss of tumor suppressors promotes HIF-1a
translation, which is suppressed by mTOR inhibition.
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phosphorylated and inhibited by AKT [Manning et al., 2002; Potter
et al., 2002], which is activated by PI3K [Kumar et al., 2005]. Either
stimulating any of the Ras, PI3K, AKT andmTOR signaling pathways
or inhibiting TSC2 enhances HIF-1a translation [Blancher et al.,
2001; Chen et al., 2001; Hudson et al., 2002; Brugarolas et al., 2003,
2004; Majumder et al., 2004; Bernardi et al., 2006]. On the contrary,
phosphatase and tensin homolog (PTEN), a suppressor of PI3K
[Carracedo and Pandolfi, 2008], was found to be a negative regulator
of HIF-1a translation [Zundel et al., 2000].

On the other hand, mTOR signaling is inhibited by activativation
of AMPK, which phosphorylates TSC2 [Kimura et al., 2003].
Upstream to the AMPK, the LKB1 tumor suppressor gene encodes
a serine/threonine kinase [Hawley et al., 2003], and the LKB1-AMPK
pathway inactivates mTOR signaling [Shaw et al., 2004]. Protein
levels of HIF-1a and its target GLUT1 are increased in LKB1-
deficient and AMPK-deficient fibroblasts, and the epithelia of
gastrointestinal hamartomas of Lkb1þ/� mice also show increased
HIF-1a and GLUT1 compared with the surrounding normal tissue
[Shackelford et al., 2009]. It is important to note that as the energy
sensor, AMPK is activated by low glucose, low glutamine and
hypoxia [Laderoute et al., 2006; Jibb and Richards, 2008; Mungai
et al., 2011; Davie et al., 2015]. Therefore, nutrients insufficiency
represents another fundamental parameter determining rate of cell

growth and proliferation as well as HIF-1a translation [Harris and
Lawrence, 2003].

STRESSES FACILITATE HIF-1 ACTIVATION BY ENHANCING
POSTTRANSLATIONAL PROCESSING OF HIF-1a
At the cellular level, HIF-1 activation drives the utilization of glucose
and rapid production of ATP, a process that is not only critical for
proliferating cells, but also facilitates cells to survive stress
conditions such as nutrient insufficiency and cell damage caused
by a variety of physical, chemical and mechanical factors. How HIF-
1 is activated under stress conditions has been revealed by the
analysis of a variety of compounds that destabilize HIF-1a and/or
inhibit HIF-1 function (Table I).While not fully understood, efforts to
dissect the molecular mechanisms underlying the repressive effects
of drugs on HIF-1 indicate the involvement of the molecular
chaperone heat shock protein 90 kD (Hsp90) [Isaacs et al., 2002] and
heat shock protein 70 kD (Hsp70) [Kong et al., 2006; Luo et al., 2010].
They form a quality control (QC) system of HIF-1a and are
responsible for the posttranslational processing and stabilization of
nascent HIF-1a (Fig. 4). Hsp90 is one of the most abundant cytosolic
proteins, counting 1–2% of total amount of proteins inside
mammalian cells [Borkovich et al., 1989]. Hsp90 assists varieties
of proteins (known as clients), including key regulatory proteins

TABLE I. Summary of Compounds That Repress HIF-1

Mechanism Drug classification Dugs Potential implication in the QC model

Repressing
HIF-1a
translation

EGFR inhibitor Erlotinib [Pore et al., 2006] Translation driven by oncogenic and
proliferative signals

Galbanic acid [Eskandani et al., 2015]
Gefitinib [Pore et al., 2006]

Her2/ErbB2 inhibitor Herceptin [Laughner et al., 2001]
PI3K inhibitor Apigenin [Fang et al., 2005]

NVP-BEZ235 [Cho et al., 2010]
mTOR inhibitor CCI-779 [Wan et al., 2006]

Everolimus [Majumder et al., 2004]
Rapamycin [Laughner et al., 2001]

? PX-478[Welsh et al., 2004;
Koh et al., 2008]

Stress-related select initiation?

Reduce
HIF-1a
stability

Hsp90 inhibitors 17-AAG [Isaacs et al., 2002; Kong et al.,
2006;
Liu et al., 2007]

Hsp70/Hsp90 function is needed for
posttranslational stabilization of HIF-1a

17-DMAG [Lang et al., 2007]
Geldanamycin [Mabjeesh et al., 2002;
Zagzag et al., 2003]

KF58333 [Kurebayashi et al., 2001]
HDAC inhibitors FK228 [Lee et al., 2003]

LAQ824 [Qian et al., 2006]
LMK235 [Chen et al., 2015]
SAHA [Kong et al., 2006]
TSA [Kong et al., 2006]

Microtubule-disrupting drugs 2ME2 [Mabjeesh et al., 2003; Escuin et al.,
2005]

Microtubule dynamics is involved in the
posttranslational QC processing?

Colchicine [Escuin et al., 2005]
Discodermolide [Escuin et al.,
2005] Epothilone B [Escuin et al., 2005]

Taxotere [Escuin et al., 2005]
Vincristine [Escuin et al., 2005]

Electron transfer chain disrupting BAY 87-2243 [Berhoerster et al., 2011] ROS inhibits PHD activity, stabilizing mature
HIF-1a

Decrease
HIF-1
transactivation

HDAC inhibitors SAHA [Fath et al., 2006] Cytosolic deacetylases facilitate Hsp70/Hsp90
function, promoting formation of mature
HIF-1a

TSA [Fath et al., 2006]
Proteasome inhibitors Velcade [Kaluz et al., 2006] Accumulation of misfold HIF-1a inhibits

normal HIF-1a activity
p300/CBP inhibitors Chetomin [Staab et al., 2007] HIF-1/coactivator interaction is crucial
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such as steroid hormone receptors, transcription factors, and kinases,
to fold properly into their active conformation by consuming energy
from ATP hydrolysis, which buffers proteostasis against environ-
mental stress [Whitesell and Lindquist, 2005]. Usually Hsp90 does
not recognize client proteins in the nascent state; it interacts with
other co-chaperones, which guide the client recognition and delivery
of client proteins. Hsp70 is a well-known co-chaperone that works
with Hsp90 to form the chaperone cycle [Pratt and Toft, 2003;
Wegele et al., 2004]. The monomeric Hsp70 recognizes short
hydrophobic motifs in client proteins, which are commonly exposed
in nascent polypeptide chains. The newly synthesized client proteins
then associate with Hsp70 to form an early complex, leading to the
delivery of client proteins to Hsp90 to form the mature complex
[Pratt and Toft, 2003; Wegele et al., 2004; Taipale et al., 2010]. The
Hsp90 oligomeric double ring structure encloses the entire nascent
client protein and ensures the correct folding [Pratt and Toft, 2003;
Wegele et al., 2004; Taipale et al., 2010]. The dynamic interaction
between HIF-1a and Hsp90 was found to facilitate the stabilization
of HIF-1a [Katschinski et al., 2004], indicating HIF-1a is one of the
client proteins of the Hsp70/Hsp90 system. This was further
supported by the evidence that Hsp90 inhibitors such as 17-
allylaminogeldanamycin (17-AAG) induce proteasomal degradation
of HIF-1a in the absence of oxygen and in a VHL-independent
manner [Isaacs et al., 2002; Mabjeesh et al., 2002; Zagzag et al.,
2003; Kong et al., 2006].

Another group of compounds, the histone deacetylase (HDAC)
inhibitors, including trichostatin A (TSA), SAHA (vorinostat), sodium
butyrate and LAQ824, were also reported to induce proteasomal
degradationofHIF-1a in aVHL-independentmanner similar toHsp90
inhibitors [Fath et al., 2006; Qian et al., 2006] (Table I). HDACIs that
cause a suppressive effect on HIF-1 usually non-selectively inhibit all

Class I and Class II HDACs, including HDAC1-9 [Yang and Seto, 2007;
ChenandSang,2011].Recently,amemberofClass IIaHDACs,HDAC5,
has been identified as the specific HDAC member that facilitates the
stabilization and nuclear accumulation of HIF-1a protein [Chen et al.,
2015]. HDAC5 dynamically shuttles between the nucleus and the
cytosol and has relatively weak enzymatic activity on the histones
[McKinsey et al., 2001; Fischle et al., 2002]. New findings reveal that
Hsp70 is a cytosolic substrate of HDAC5 [Chen et al., 2015], and
deacetylation of the Hsp70 by HDAC5 promotes HIF-1a interaction
withHsp90, thus facilitating the rapidnuclearaccumulationofHIF-1a
[Chen et al., 2015]. Retrospectively, both HDAC4 and HDAC6 were
proposed todestabilizeHIF-1aandrepressHIF-1 function [Konget al.,
2006; Qian et al., 2006; Geng et al., 2011]. HDAC4 is highly
homologous to HDAC5 [McKinsey et al., 2001]. We found that the
knockdown of either HDAC4 or HDAC5 reduces HIF-1a protein levels
and suppressesHIF-1 function (Fig. 5A, B).Moreover, expressionof an
HDAC4 mutant S265/266A, which is exclusively localized in the
cytosol, is sufficient to stabilize HIF-1a (Fig. 5C). This indicates that
cellsexpressingHDAC4mightfacilitateHIF-1astabilizationthrougha
similarmechanism.However, hypoxia only increases the protein level
ofHDAC5[Chenetal.,2015],notHDAC4(Fig.5A).Their tissue-specific
expression levels in different tissues also vary dramatically; HDAC4 is
highly expressed in myeloid, whereas HDAC5 is highly expressed in
heart, neuron, muscle, lung, and placenta, which represent the tissues
most sensitive to physiological fluctuation of oxygen levels and
metabolic stress [Chang et al., 2004]. Therefore, both HDAC4 and
HDAC5 may be involved in the regulation of posttranslational
processing of HIF-1a by regulating the Hsp70/Hsp90 system, but it is
likely that HDAC5 plays a more important role in facilitating HIF-1a
folding in response to hypoxic stress. HDAC6 inhibtion was proposed
to increase the acetylation level of Hsp90, thus impairing Hsp90

Fig. 4. Proposedmodel of AMPK-HDAC5 enhanced, Hsp70/Hsp90 executed posttranslational processing of HIF-1a. AMPK serves as a sensor of multiple types of stresses, which
promotes the cytosolic localization of HDAC4 and HDAC5, depending on which is expressed in a specific type of cells. HDAC4 and HDAC5 catalyzed deacetylation of Hsp70
enhances the efficiency of posttranslational processing of HIF-1a, minimizing pre-mature degradation.

JOURNAL OF CELLULAR BIOCHEMISTRY HIF-1 IN SURVIVAL STRATEGY OF STRESSED CELLS 271



function [Kovacs et al., 2005; Fath et al., 2006]. However, romidepsin
(FK228,depsipeptide), anHDACinhibitor thathasveryweak repressive
effect on HDAC6, effectively destabilizes HIF-1a, making it possible
that it also destabilizes HIF-1a through inhibiting HDAC5 or HDAC4,
leading to Hsp70 hyperacetylation [Wang et al., 2007; To et al., 2011].

AMPK, the master regulator of cellular energy homeostasis, is
activated by nutrient insufficiency including low glucose, low
glutamine and hypoxia [Laderoute et al., 2006; Jibb and Richards,
2008; Mungai et al., 2011; Davie et al., 2015]. AMPK is a highly
conserved serine or threonine heterotrimeric kinase consisting of a,
b, and g subunits [Winder and Hardie, 1999]. Nutrient insufficiency
causes an increase of intracellular AMP; the binding of AMP to
AMPK-g subunit exposes the catalytic domain on AMPK-a, thus
activating AMPK [Adams et al., 2004]. The cannonical function of
AMPK activation is tomaintain the intracellular ATP homeostasis by
stimulating ATP producing catabolic pathways but inhibiting ATP
consuming biosynthetic pathways. Interestingly, AMPK is also
activated when cells are exposed to cell damage factors such as
increased work load, heat, radiation and pathogenic microbials. This
indicates that AMPK activation may have a universal and critical
role in cells0 survival strategy upon being stressed.

As an ATP conserving strategy, AMPK activation inhibits general
protein translation by suppressing mTOR signaling pathways,
including HIF-1a [Shackelford and Shaw, 2009]. However, HIF-1
is the major driver of glucose utilization, which provides rapid ATP
generation for cells to survive and sustain certain key functions
under stressful conditions [Chen et al., 2015; Davie et al., 2015]. It
had been unclear until recently how HIF-1 function is sustained
under the stress conditions. In fact, activated AMPK phosphorylates
and promotes the nuclear export of HDAC5 and perhaps HDAC4 as

well [McKinsey et al., 2001]. In the cytosol, HDAC4 and HDAC5
stabilize HIF-1a by deacetylating Hsp70, promoting the transfer of
HIF-1a from Hsp70 to Hsp90 for the completion of the maturation
process. Therefore, while the AMPK may reduce the translation of
HIF-1a, it compensates by enhacing the efficiency of posttransla-
tional folding of HIF-1a, thus ensuring HIF-1 activation under
stressful conditions [Chen et al., 2015].

It is important to point out that for normal cells under physiological
conditions, a basal level of Hsp70/Hsp90 activity may be sufficient to
process newly synthesized proteins. However, under conditions that
new proteins are translated in large quantities (proliferative biosyn-
thesis, overexpressing recombinant proteins), an enhanced capacity
of Hsp70/Hsp90 may become crucial for the processing of newly
synthesized critical proteins suchasHIF-1a. Hence, suppressionof the
enhancement of Hsp70/Hsp90 function may disrupt the formation of
correctly folded, functional active HIF-1a, leading to disposal of
misfoldedHIF-1aby a quality control system. This disposal appears to
involve a hydroxylation-independent and ubiquitination-independ-
ent proteasomedegradation (UIP) [Kong et al., 2006; Lianget al., 2006;
Lao et al., 2012], hence beingmechanistically distinguishable fromthe
oxygen-triggered degradation (Fig. 1). Blocking this process with
proteasome inhibitors or overexpressing HIF-1a increases the total
levels of HIF-1a, but may not significantly activate HIF-1 function
[Kaluz et al., 2006; Chen et al., 2015], demonstrating the importanceof
the posttranslational processing mediated by Hsp70/Hsp90. There-
fore, the stress-activated AMPK-HDAC5-Hsp70/Hsp90-HIF-1 path-
waymay function as a critical but universal survival strategy for cells
to copewith a variety of stresses, including but not limited to hypoxia.

In addition to the enhanced Hsp70/Hsp90 function, selective
translation of ATF4, a transcription factor often activated during

Fig. 5. Cytosolic HDAC4 and HDAC5 contribute to hypoxic stabilization of HIF-1a and functional activation of HIF-1. Knockdown of either HDAC4 or HDAC5 attenuates
hypoxia triggered HIF-1a accumulation. Hep3B cells were transfected with indicated siRNA . After 42 h, cells were exposed to hypoxia (1% O2) for 6 h. (A) Western blotting
showing the protein levels of HIF-1a, HDAC4 and HDAC5. The protein levels of a-tubulin were determined as a loading control. Note that hypoxia enhanced HDAC5 but not
HDAC4. (B) Total RNAwas collected, and quantitative real time PCRwas performed following reverse transcription to determine themRNA levels of CA-IX as an indicator of HIF-1
function. (C) Cytosolic HDAC4 mutant (S265/266A) is sufficient to stabilize HIF-1a. Hep3B cells were cotransfected with 2mg of HA-HIF-1a together with 2mg of either
control vector, Flag-HDAC4(WT), or cytosolic mutant HDAC4-S265/266A. HIF-1a and Flag-tagged HDAC4 were detected by Western blotting.
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endoplasmic reticulum stress and unfolded protein response, also
occurs as a result of cellular stress and mTORC1 inhibition
[Rutkowski and Kaufman, 2003]. It has been shown that the
activation of ATF4 is critical for cell adaptation to nutrient depletion
[Ye et al., 2010]. Well known target genes activated by ATF4 are
DDIT3 (CHOP) and stanniocalcin 2 (STC2). However, it remains
unclear if there is a link among the ATF4-pathway, AMPK activation
and HIF-1 activation. Finally, it is reported that a stress-activated
protein kinase, JNK1, is required for HIF-1a stabilization in hypoxic
tissues [Antoniou et al., 2009], providing another link between cell
stress and HIF-1 activation.

RELEVANCE OF HIF-1 ACTIVATION IN TUMORS
In solid tumors, oncogenic pathways drive rapid cell proliferation,
which demands for more nutrients, particularly molecular oxygen,
glucose and amino acids. However, the abnomral vascular structure
limits the nutrient delivery, resulting in nutrient insufficiency [Chen
and Sang, 2011]. While hypoxia is the major cause of HIF-1a
stabilization, recently it became clear that the lack of glucose or
amino acids may also contribute to HIF-1 activation. It has been well
known that HIF-1 activation plays an important role for hypoxic cell
survival and migration [Vaupel, 2009]. HIF-1a overexpression and
HIF-1 activation have been observed in varieties of solid tumors
[Zhong et al., 2000; Semenza, 2004, 2006; Vaupel et al., 2007]. Of the
more than 1,000 HIF-1 target genes that have been identified
[Manalo et al., 2005; Xia et al., 2009; Schodel et al., 2011], many are
implicated in adaptive strategies including metabolic reprogram-
ming, survival, angiogenesis, andmigration; enhanced surivival and
migration directly contribute to tumor metastasis and resistance to
radiation and chemotherapy [Hockel and Vaupel, 2001; Semenza,
2003, 2004, 2010; Lee et al., 2009; Harada et al., 2012]. Accordingly,
it has been proposed that repressing HIF-1 functionmay improve the
therapeutical outcome of tumors [Semenza, 2003, 2009, 2010].

Oncogenic activation of HIF-1, triggered by both hypoxia and
hypoxia independent mechanisms, plays a critical role in metabolic
transformation and tumor progression. The aerobic glycolysis
caused by oncogenic activation of HIF-1 is best known as the
Warburg effect. In addition to metabolic adaptation as discussed in
introduction, angiogenesis and lymphogenesis are promoted by HIF-
1. Deletion of HIF-1a dramatically inhibits solid tumor development
in vivo, and reduces expression of pro-angiogenic factors, such as
VEGF, which promotes the formation of capillaries, and fibroblast
growth factor 1 (FGF-1), which primarily stimulates the formation of
arterial vessels [Ryan et al., 1998, 2000; Hirota and Semenza, 2006].
HIF-1 activation also promotes cancer invasion and metastasis, a
major obstacle to successful cancer therapy [Fidler, 2003; Huber
et al., 2005; Polyak and Weinberg, 2009; Singh and Settleman,
2010]. HIF-1a overexpression is associated with more aggressive
and invasive behaviors of human cancers [Zhong et al., 1999; Bos
et al., 2001].

HIF-1 activation results in radiation resistance in solid tumors
[Hockel and Vaupel, 2001]. Radiation reacts with intracellular
molecules and molecular oxygen to cause DNA damage by forming
oxygen free radicals [Hall and Giaccia, 2006]. In mouse model, HIF-
1a null tumor xenografts show increased radiation sensitivity
[Aebersold et al., 2001]. Clinical data also revealed that HIF-1a

overexpression increased risk of failure to achieve complete
remission after radiation therapy [Aebersold et al., 2001]. One study
reports that cancer cells require HIF-1 activation for metastasis after
surviving radiation [Harada et al., 2012].

While radiation resistance may involve mutliple pathways
including the established ATR/ATM-DNA repair response [Choud-
hury et al., 2006], radiation also increases HIF-1 activity and
promotes endothelial cell survival [Moeller et al., 2004], which may
form another adaptive strategy for tumor cells to survive the
radiation. How radiation activates HIF-1 remains unclear; it has been
reported that radiation activates AMPK and the ATF4 pathway [Fels
and Koumenis, 2006; Lee et al., 2008; Cao and Wan, 2009; Sanli
et al., 2010, 2012; Zhang et al., 2010; Zannella et al., 2011; Kim et al.,
2014], and overexpression of STC2, an ATF4 target, positively
correlates to radiation resistance [Smith et al., 2006; Lin et al., 2014].
It is interesting to note that an intriguing similarity exists between
the radiation-triggered and the nutrient insufficiency-triggered
cellular responses: both induce cell cycle inhibition, activation of
AMPK, activation of ATF4 pathways [Meng et al., 2010; Qie et al.,
2012; Davie et al., 2015], and most importnatly, activation of HIF-1.
However, a mechanistic link among those responses remains
unclear. Further investigation is needed to address if this similarity
explains the radiation resistance of tumor cells exposed to nutrient
insufficiency.

Considering the role of HIF-1 in cells0 survival strategy,
researchers are actively exploring HIF-1 as a target for cancer
therapy either alone or as a sensitizer for chemoradiation [Welsh
et al., 2004; Kong et al., 2005; Tan et al., 2005]. Current strategies
include suppressing HIF-1a translation, increasing HIF-1a degra-
dation and inhibiting HIF-1 transcription activity [Semenza, 2007].
For example, mTOR inhibitors have been tested to inhibit HIF-1a
translation [Majumder et al., 2004; Thomas et al., 2006]. Other
compounds including HDACIs [Marks et al., 2001; Johnstone and
Licht, 2003; Drummond et al., 2005], Hsp90 inhibitors [Miyata,
2005; Neckers and Neckers, 2005], proteasome inhibitors [Sunwoo
et al., 2001; Bazzaro et al., 2006; Joazeiro et al., 2006; Ishii et al.,
2007] and microtubule inhibitors [Mabjeesh et al., 2003; Escuin
et al., 2005; Newcomb et al., 2006] were found to destabilize HIF-1a
or inhibit HIF-1 function (Table I). Echinomycin, an antibiotic
peptide, supresses HIF-1 function by reducing HIF-1a binding to
DNA [Kong et al., 2005]; PX478 and 103D5R showed the ability to
inhibit HIF-1 function through unkown mechanisms [Welsh et al.,
2004; Kong et al., 2005; Tan et al., 2005]. While these approaches
have demonstrated to be effective, severe adverse effects on normal
tissues limit their clinical application. Particularly, several com-
pounds directly targeting the Hsp70/Hsp90 system or HIF-1 have
proven effective for cancers. However, since a basal level of Hsp70/
Hsp90 activity may be required for normal cells under physiological
conditions to process newly synthesized proteins, it would not be
surprising to find that directly and completely disrupting the Hsp70/
Hsp90 has various side effects on normal tissues. Since tumor cells
frequently experience nutrient insufficiency and therapy-elicited
stresses, refolding or disposal of stress-triggered misfolded or
damaged proteins may effectively overwhelm the basal level of
Hsp70/Hsp90 function. Accordingly, it is expected that targeting the
AMPK-HDAC5 or AMPK-HDAC4-enhanced Hsp70/Hsp90 activity
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may specifically disrupt the survival strategy of tumor cells exposed
to nutrient insufficiency, radiation and chemotherapy.

RELEVANCE OF HIF-1 ACTIVATION IN ISCHEMIC DISORDERS
Nutrient insufficiency, particularly hypoxia, is the initiator and
major contributing factor of the pathology of ischemic disorders. As
opposed to solid tumors, ischemic lesions will greatly benefit from a
successful survival strategy to cope with the nutrient insufficiency.
Animal studies showed that HIF-1 function plays an important role
in ischemia-induced vascular remodeling [Rivard et al., 1999; Patel
et al., 2005; Bosch-Marce et al., 2007; Rey et al., 2009, 2011]. HIF-1a
-/- mice were found to be lethal, but HIF-1a þ/� mice showed
reduced blood flow recovery and increased tissue damage after
femoral artery ligation compared with wildtype littermates [Bosch-
Marce et al., 2007]. Intramuscularly expressing a constitutively
active form of HIF-1a [Kelly et al., 2003] not only protects mice from
age-dependent impairment of ischemia-induced vascular remodel-
ing [Bosch-Marce et al., 2007], but also improves the recovery of
blood flow in a rabbit model [Patel et al., 2005]. In addition, HIF-1
activation also mediates the protection induced by ischemic
preconditioning [Murry et al., 1986]. After being exposed to short
periods of ischemia and reperfusion, the heart suffered less injury
from a subsequent prolonged ischemic insult, shown by a smaller
infarct size. Loss of one allele of HIF-1a abolishes this protection [Cai
et al., 2008], demonstrating the importance of HIF-1 activation in
this protection. HIF-1 may also protect the heart from pressure
overload heart failure [Sano et al., 2007]. Hypertension could form a
compensatory left ventricular hypertrophy to maintain the ejection
fraction at an early stage, but it will progress to an uncompensated
state with a decreased ejection fraction and eventually lead to heart
failure [Levy et al., 1990]. Tissue-specific knockout of HIF-1a in
cardiacmyocytes rapidly induced cardiac hypertrophy [Sano et al.,
2007]. Interestingly, HDAC5 knockout impairs heart adaptation to
increased work load, phenocoping the heart-specific HIF-1a
knockout [Chang et al., 2004]. Along with the fact that hypoxia
upregulates HDAC5, these findings indicate that the AMPK-HDAC5
pathway may be also involved in HIF-1a stabilization and HIF-1
activation in ischemic lesions of normal tissues.

PERSPECTIVES

In summary, nutrient insufficiency frequently occurs in solid tumors
and ischemic lesions. Activation of the AMPK pathway is a common
response to nutrient insufficiency, which triggers multiple responses
to maintain the ATP homeostasis. One of the AMPK-triggered
cascades of events is the phosphorylation and cytosolic shuttling of
HDAC4 and HDAC5, which enhances Hsp70/Hsp90 function. This
facilitates the posttranslational processing and nuclear localization
of HIF-1a, ensuring a rapid activation of HIF-1 as a survival strategy.
The role of this AMPK-facilitated HIF-1 activation in tumor
metastasis and resistance to radiation remains unclear. However,
the identification of cytosolic HDAC4 and HDAC5 as key players in
cells0 survival strategy provides new drug target to improve the
specificity of cancer therapy; targeting the conditionally required
cytosolic HDAC4 and HDAC5 is expected to have less adverse effects

on normal tissues than non-selective HDACIs, AMPK inhibitors and
Hsp90 inhibitors. The involvement of AMPK-HDAC5 or AMPK-
HDAC4 pathways in HIF-1 activation under other conditions, such
as ischemic disorders, immune response, wound healing and neuron-
degenerative disorders, remains to be explored.
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